Research Opportunities for Operational Airborne Fleet in 2030

Robert Rogers, Frank Marks, Joe Cione NOAA/AOML Hurricane Research Division Tropical Cyclone Operations and Research Forum 2016

Research challenges with tropical cyclones (TCs)

- Rapid intensity changes, including genesis
- Structure changes (e.g., shear interactions, SEF/ERCs, wind field expansion)
- Track deviations
- Rainfall
- Storm surge

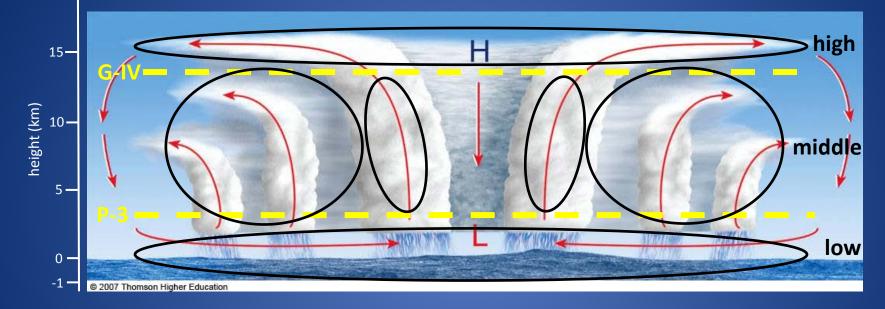
Addressing these issues requires a multiscale approach

- Environmental O(1000 km) troughs, shear, dry air, SST/OHC distributions
- Vortex O(1-100 km) symmetric/asymmetric dynamics, VRWs, M distributions
- Convective O(1 km) convective bursts, vortical hot towers
- Turbulent/PBL O(1-100 m) surface fluxes, PBL mixing, entrainment
 Microscale O(1mm) hydrometeor production, latent heating

Intensity Forecasting Experiment (IFEX): Three objectives

 Sampling throughout TC lifecycle for model DA, evaluation
 New measurement technologies
 Physical process research

Looking ahead to 2030


Technology will advance

- Modeling & DA capabilities
 - resolution increases
 - sophistication of data assimilation
 - complexity of physical parameterizations
- Observing platforms and instruments
 - mixed fleet of manned and unmanned aircraft
 - miniaturization of sensors

Scientific needs will remain

- Observations will be needed to address them
- P-3's will likely be at or near the end of their service life
- New observing techniques should consider
 - necessary fields
 - spatial coverage
 - temporal continuity
 - geographic range

Gaps in our airborne observing systems Structure of a mature hurricane

- Low: air-sea fluxes; surface-layer temperature, moisture, wind field; subsurface current structure
- Middle: microphysical structure, especially above melting level; three-dimensional winds, temperature, moisture in clear air
- High: outflow kinematic structure; radiative field

20-

Current aircraft incapable of optimally sampling these areas

Requirements for new airborne platforms and instrumentation

Low: primarily unmanned platforms

- measure temperature, moisture, winds in lowest 1-2 km and at surface
 - in situ unmanned (e.g., Coyote, Aeroclipper)
 - remote sensing from manned or unmanned (e.g., HIRAD)
- measure SST, subsurface structure
 - expendables from manned or unmanned (e.g., IR sondes, airborne-deployed AUVs)

Requirements for new airborne platforms and instrumentation

Middle: combination manned/unmanned

- microphysics above melting level
 - manned (e.g., airborne dual-Pol, A-10)
 - unmanned (e.g., Global Hawk with dual-Pol, GH deploy Coyote)
- winds, temperature, moisture in clear air
 - manned (e.g., lidar)
 - unmanned (e.g., HAMSR)
- finer-scale convective structure
 - manned (e.g., phased-array)
 - unmanned (e.g., HIWRAP on GH)

Requirements for new airborne platforms and instrumentation

Upper: unmanned platforms

- winds in outflow layer
 - unmanned: dropsondes from high-altitude, long endurance (e.g., Global Hawk)
 - unmanned: tracers deployed from balloons